Scientific publications

AUGMENTED BONE. PRELIMINARY RESULTS FROM A PILOT RANDOMISED
POSTERIOR ATROPHIC JAWS REHABILITATED WITH PROSTHESES SUPPORTED

CLIN ORAL IMPLANTS RES, 2013 MAY; 24(5):523-30. EPUB 2012 JAN 26
SINUS FLOOR ELEVATION

CLIN ORAL IMPLANTS RES, 2011 OCT; 22(10):1125-30. EPUB 2011 JAN 20
AND MINIPLATES: CASE SERIES USING AN INLAY TECHNIQUE WITH A XENOGRAFT WITHOUT MINISCREWS
VERTICAL RIDGE AUGMENTATION OF ATROPHIC POSTERIOR MANDIBLE

CLIN ORAL IMPLANTS RES, 2011 OCT; 22(10):1131-7
Scarano A, Piattelli A, Perrotti V , Manzon L, Iezzi G

JR NOMAL MAXILLOFAC IMPLANTS, 2010 FEB; 92(2):409-19
Crespi R, Capparè P , Gherlone E

MED ORAL PATOL ORAL CIR BUCAL, 2010 MAR 1; 15(2):E366-70
Caputi S

J BIOMED MATER RES B APPL BIOMATER, 2010 FEB; 92(2):409-19
Used in dentistry as bone substitutes – comparison with human

INT J ORAL MAXILLOFAC IMPLANTS, 2008 SEP-OCT; 23(5):841-6
Cardaropoli D, Cardaropoli G

INT J ORAL MAXILLOFAC IMPLANTS, 2008 JAN-FEB; 21(1):81-5
Atraumatic maxillary sinus elevation using threaded bone

INT J ORAL MAXILLOFAC IMPLANTS, 2005 JUL-AUG; 20(4):519-25
Barone A, Ameri S, Covani U

MAXILLARY SINUS AUGMENTATION USING A PORCINE BONE- DERIVED
Histology at 3 months. Human mandible grafted with OsteoBiol ® Sp-Block. Biopsy

J PERIODONTOL, 2012 OCT 29, EPUB AHEAD OF PRINT
Trubiani O, Scarano A, Orsini G, Di Iorio D, D’Arcangelo C, Piccirilli M, Sigismondo M,

europaresearch.com

Tecnoss s.r.l. is an innovative, globally active company that
Collagen matrix inside the biomaterial.

JOSSEOINTEGRATION
Process that ensures neutralization of antigenic components in

J OSSEOINTEGRATION 2014;6(2):37-42
Gheno E, Palermo A, Buffoli B, Rodella LF

J CLIN PERIODONTOL, 2013 JUL;40(7):721-7

J OSSEOINTEGRATION 2014;6(2):37-42
Fischer Kr, Stavropoulos A, Calvo Guirado Jl, Schneider D, Fickl S

JOSSEOINTEGRATION
Influence of local administration of pamidronate on extraction

JOSSEOINTEGRATION
Socket healing – a histomorphometric proof-of-principle

JOSSEOINTEGRATION
Cortico-cancellous porcine bone grafts: a study in rabbit

JOSSEOINTEGRATION
The bone tissue responses to prehydrated and collagenated

JOSSEOINTEGRATION
 Preservation of the postextraction alveolar ridge: a clinical and

JOSSEOINTEGRATION
Tooth removal: a clinical and histomorphometric study

JOSSEOINTEGRATION
Xenograft versus extraction alone for ridge preservation after

JOSSEOINTEGRATION
A clinical study of the outcomes and complications associated

JOSSEOINTEGRATION
Immediate postextraction implants: treatment of residual

JOSSEOINTEGRATION
Maxillary sinus augmentation: histologic and histomorphometric

JOSSEOINTEGRATION
Immediate placement in fresh sockets in association or not with

JOSSEOINTEGRATION
Bucco-lingual crestal bone changes around implants

JOSSEOINTEGRATION
With a 2-stage inlay technique: a case report

JOSSEOINTEGRATION
The bone lamina technique: a novel approach for lateral ridge

JOSSEOINTEGRATION
Bone formation in sinus augmentation procedures using

JOSSEOINTEGRATION
The performance of human periodontal ligament mesenchymal

JOSSEOINTEGRATION
Histology at 3 months. Human mandible grafted with OsteoBiol ® Sp-Block. Biopsy

JOSSEOINTEGRATION
Tooth removal: a clinical and histomorphometric study

JOSSEOINTEGRATION
Xenograft versus extraction alone for ridge preservation after

JOSSEOINTEGRATION
A clinical study of the outcomes and complications associated

JOSSEOINTEGRATION
Immediate postextraction implants: treatment of residual

JOSSEOINTEGRATION
Maxillary sinus augmentation: histologic and histomorphometric

JOSSEOINTEGRATION
Immediate placement in fresh sockets in association or not with

JOSSEOINTEGRATION
Bucco-lingual crestal bone changes around implants

JOSSEOINTEGRATION
With a 2-stage inlay technique: a case report

JOSSEOINTEGRATION
The bone lamina technique: a novel approach for lateral ridge

JOSSEOINTEGRATION
Bone formation in sinus augmentation procedures using

JOSSEOINTEGRATION
The performance of human periodontal ligament mesenchymal

JOSSEOINTEGRATION
Histology at 3 months. Human mandible grafted with OsteoBiol ® Sp-Block. Biopsy

JOSSEOINTEGRATION
Tooth removal: a clinical and histomorphometric study

JOSSEOINTEGRATION
Xenograft versus extraction alone for ridge preservation after

JOSSEOINTEGRATION
A clinical study of the outcomes and complications associated

JOSSEOINTEGRATION
Immediate postextraction implants: treatment of residual

JOSSEOINTEGRATION
Maxillary sinus augmentation: histologic and histomorphometric

JOSSEOINTEGRATION
Immediate placement in fresh sockets in association or not with

JOSSEOINTEGRATION
Bucco-lingual crestal bone changes around implants

JOSSEOINTEGRATION
With a 2-stage inlay technique: a case report

JOSSEOINTEGRATION
The bone lamina technique: a novel approach for lateral ridge

JOSSEOINTEGRATION
Bone formation in sinus augmentation procedures using

JOSSEOINTEGRATION
The performance of human periodontal ligament mesenchymal

JOSSEOINTEGRATION
Histology at 3 months. Human mandible grafted with OsteoBiol ® Sp-Block. Biopsy

JOSSEOINTEGRATION
Tooth removal: a clinical and histomorphometric study

JOSSEOINTEGRATION
Xenograft versus extraction alone for ridge preservation after

JOSSEOINTEGRATION
A clinical study of the outcomes and complications associated

JOSSEOINTEGRATION
Immediate postextraction implants: treatment of residual

JOSSEOINTEGRATION
Maxillary sinus augmentation: histologic and histomorphometric

JOSSEOINTEGRATION
Immediate placement in fresh sockets in association or not with

JOSSEOINTEGRATION
Bucco-lingual crestal bone changes around implants

JOSSEOINTEGRATION
With a 2-stage inlay technique: a case report

JOSSEOINTEGRATION
The bone lamina technique: a novel approach for lateral ridge

JOSSEOINTEGRATION
Bone formation in sinus augmentation procedures using

JOSSEOINTEGRATION
The performance of human periodontal ligament mesenchymal

JOSSEOINTEGRATION
Histology at 3 months. Human mandible grafted with OsteoBiol ® Sp-Block. Biopsy

JOSSEOINTEGRATION
Tooth removal: a clinical and histomorphometric study

JOSSEOINTEGRATION
Xenograft versus extraction alone for ridge preservation after

JOSSEOINTEGRATION
A clinical study of the outcomes and complications associated

JOSSEOINTEGRATION
Immediate postextraction implants: treatment of residual

JOSSEOINTEGRATION
Maxillary sinus augmentation: histologic and histomorphometric

JOSSEOINTEGRATION
Immediate placement in fresh sockets in association or not with

JOSSEOINTEGRATION
Bucco-lingual crestal bone changes around implants

JOSSEOINTEGRATION
With a 2-stage inlay technique: a case report

JOSSEOINTEGRATION
The bone lamina technique: a novel approach for lateral ridge

JOSSEOINTEGRATION
Bone formation in sinus augmentation procedures using

JOSSEOINTEGRATION
The performance of human periodontal ligament mesenchymal

JOSSEOINTEGRATION
Histology at 3 months. Human mandible grafted with OsteoBiol ® Sp-Block. Biopsy

JOSSEOINTEGRATION
Tooth removal: a clinical and histomorphometric study

JOSSEOINTEGRATION
Xenograft versus extraction alone for ridge preservation after

JOSSEOINTEGRATION
A clinical study of the outcomes and complications associated

JOSSEOINTEGRATION
Immediate postextraction implants: treatment of residual

JOSSEOINTEGRATION
Maxillary sinus augmentation: histologic and histomorphometric

JOSSEOINTEGRATION
Immediate placement in fresh sockets in association or not with

JOSSEOINTEGRATION
Bucco-lingual crestal bone changes around implants

JOSSEOINTEGRATION
With a 2-stage inlay technique: a case report

JOSSEOINTEGRATION
The bone lamina technique: a novel approach for lateral ridge

JOSSEOINTEGRATION
Bone formation in sinus augmentation procedures using

JOSSEOINTEGRATION
The performance of human periodontal ligament mesenchymal

JOSSEOINTEGRATION
Histology at 3 months. Human mandible grafted with OsteoBiol ® Sp-Block. Biopsy
TECNOSS®: A UNIQUE PROCESS THAT ACCELERATES AND GUIDES NATURAL BONE REGENERATION

Tecnoss® developed and patented a unique biotechnology that prevents the ceramization phase of natural bone and preserves the tissue collagen, allowing an osteoclastic-type remodelling of the biomaterial similar to physiological bone turnover and delivering a product endowed with characteristics very similar to human mineral bone\(^1\).

The combination of these factors allows a consistent new bone formation and a close contact between neo-formed bone and biomaterial (Fig. A).

COLLAGEN: A KEY FACTOR FOR BONE REGENERATION

Collagen has a key role in bone regeneration process in that:

a) it acts as a valid substrate for platelet activation and aggregation

b) it serves to attract and differentiate the mesenchymal stem cells present in the bone marrow\(^2\)

c) it increases the proliferation rate of the osteoblasts up to 2/3 times\(^3\)

d) it stimulates the activation of the platelets, osteoblasts and osteoclasts in the tissue healing process

OSTEOBIOL®: UNIQUE COLLAGENATED BIOMATERIALS

Thanks to the innovative Tecnoss® technology, the OsteoBiol® line has the following important characteristics:

1) absence of a foreign body response\(^4\)

2) gradual resorption over time\(^5,6\)

3) stimulation/acceleration of physiological tissue healing process\(^2\)

4) protection of the grafting site from infection (membranes)\(^7\)

5) capability of carrying medication to the surgical site\(^8\)

The Tecnoss® new generation of biomaterials, thanks to a revolutionary technology, goes beyond the simple role of aiding natural bone regrowth by stimulating and accelerating this vital physiological process.
A highly osteoconductive scaffold

CHARACTERISTICS

Sp-Block and Dual-Block support new bone formation\(^\text{(9,10)}\) because of their extremely osteoconductive surface: thanks to the rigid consistency these blocks are able to maintain in time the original graft volume, which is particularly important in case of large regenerations. Moreover the collagen content facilitates blood clotting and the subsequent invasion of regenerative and repairing cells, favoring restitutio ad integrum of missing bone.

HANDLING

Sp-Block and Dual-Block must be hydrated before use for with sterile lukewarm physiological solution or with antibiotics (5/10 minutes for Sp-Block and Dual-Block Soft, up to 40 minutes for Dual-Block Norm). Afterwards, the block can be adapted to the receiving site which must be accurately decorticated in order to guarantee maximum contact; the blocks should be always fixed with osteosynthesis microscrews. In case of vertical augmentation with inlay technique Sp-Block should be fixed also with miniplates. Protection with OsteoBiol\(^\text{®}\) Evolution membrane is recommended.

CLINICAL INDICATIONS OVERVIEW

Sp-Block is indicated in cases where a vertical gain in posterior mandible is required\(^\text{(11,12,13)}\), to achieve an augmentation of maximum 5 mm, by means of the inlay technique. Dual-Block can be grafted with the onlay technique only to augment horizontally heavily resorbed maxilla. Whatever is the applied technique, it is recommended to fill the gaps around the block with a biomaterial in granules to achieve the desired volume and contour of the augmented recipient site.

Excellent clinical performances

CASE REPORT

VERTICAL REGENERATION

Vertical regeneration with inlay technique

Sex: **Female** | Age: **60**

Fig. 1 Pre-operatory x-ray

Fig. 2 After one horizontal and two vertical osteotomies, the bone fragment is moved towards the coronal direction

Fig. 3 Space obtained after moving the bone fragment

Fig. 4 Positioning of OsteoBiol® Sp-Block

Fig. 5 Post-surgery x-ray

Fig. 6 Clinical appearance of the graft during re-opening, after 3 months

Fig. 7 Preparation of implant sites

Fig. 8 Positioning of the implants

Fig. 9 Positioning of the implants

Fig. 10 Histology after 3 months*

Fig. 11 Histology detail*

Fig. 12 Histology detail*

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Data provided by:
Prof Ulf Nannmark
Göteborg University, Sweden

Sp-Block: OsteoBiol®
Tecnoss s.r.l. is an innovative, globally active company that develops, produces and documents premium-quality xenogenic biomaterials by the brands Tecnoss® and OsteoBiol®.

Its 20 years of research led to its patent-protected production process that ensures neutralization of antigenic components in order to achieve biocompatibility, while preserving the natural collagen matrix inside the biomaterial.

Tecnoss® products comply with highest quality standards such as ISO 10993, ISO 13485 (notified body Kiwa Cermet) and 93/42/EC (notified body CE 0373).